

Transient Voltage Suppressors Array for ESD Protection

SLVU2.8-4

Description

The SLVU2.8-4 is in an SO-08 package and may be used to protect two high-speed line pairs. The flow-thru" design minimizes trace inductance and reduces voltage overshoot associated with ESD events. The low clamping voltage of the SLVU2.8-4 minimizes the stress on the protected IC.

Functional Diagram

Feature

- 400 Watts Peak Pulse Power per Line (tp=8/20μs)
- Protects two line pairs (four lines)
- Low capacitance
- RoHS Compliant
- ◆ IEC61000-4-2 (ESD) ±5kV (air), ±8kV (contact)
- IEC61000-4-4 (EFT) 40A (5/50 ηs)
- IEC61000-4-5 (Lightning) 24A (8/20μs)

Applications

- 10/100/1000 Ethernet
- WAN/LAN Equipment
- Test & Measurement Equipment
- Switching Systems
- Instrumentation
- Audio/Video Inputs

Mechanical Characteristics

- ◆ JEDEC SO-08 Package
- Molding Compound Flammability Rating : UL 94V-0

7

2

8

1

6 5

3

€€₩

4

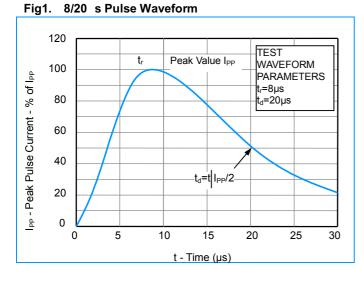
- Weight 70 Milligrams (Approximate)
- Quantity Per Reel : 500pcs
- Reel Size : 7 inch
- Lead Finish : Lead Free

Mechanical Characteristics					
Symbol	Parameter	Value	Units		
P _{PP}	Peak Pulse Power (tp=8/20 s waveform)	400	W		
TL	Lead Soldering Temperature	260 (10sec)			
T _{STG}	Storage Temperature Range	-55 to +150	X		
TJ	Operating Temperature Range	-55 to +150			
	IEC61000-4-2 (ESD) Air Discharge	± 15	κv		
	Contact Discharge	<u>±8</u>			
	IEC61000-4-4 (EFT)	40	А		
	IEC61000-4-5 (Lightning)	24	А		

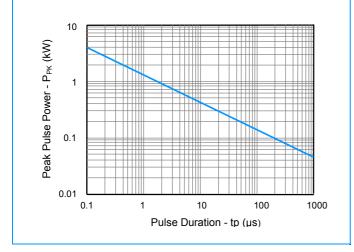
Shenzhen JDT Fuse Industrial Co.,Ltd

www.jdtfuse.com

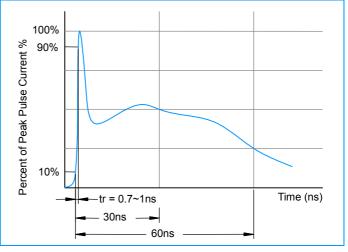
Low Capacitance



Low Capacitance


Transient Voltage Suppressors Array for ESD Protection

SLVU2.8-4 Electrical Characteristics (@ 25 Unless Otherwise Specified) VRWM VB С Vc I_{R} Device @5A (A) **Part Number** (V) (pF) (V) Marking (mA) (Min.) (Max.) (Max.) (Max.) (@A) (Max.) (Typ.) SLVU SLVU2.8-4 2.8 3.0 20 24 5 2 1 8.5 2.8-4


Characteristic Curves

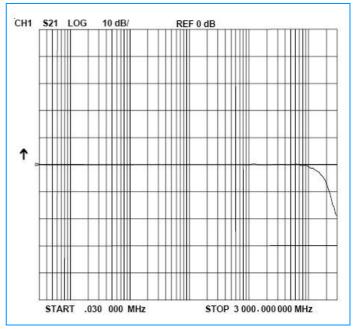
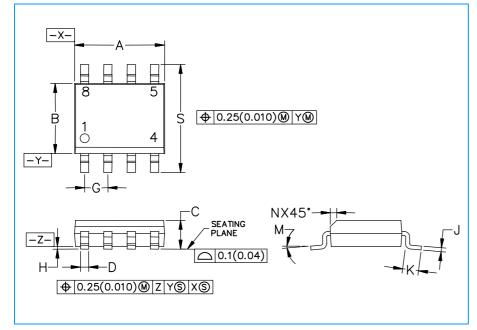


Fig2. ESD Pulse Waveform (according to IEC 61000-4-2)

Fig4. Insertion Loss S21

Shenzhen JDT Fuse Industrial Co.,Ltd


Transient Voltage Suppressors Array for ESD Protection

Low Capacitance

RoHS

SLVU2.8-4

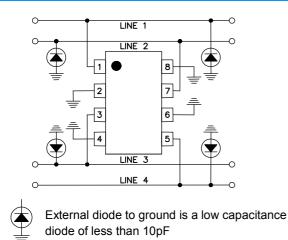
SO-08 Package Outline & Dimensions

DIM	Millimeters		Inches	
DIN	Min	Max	Min	Max
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.053	0.069
D	0.35	0.51	0.013	0.020
G	1.27BSC		0.050BSC	
н	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
к	0.40	1.27	0.016	0.050
м	0°	8°	0°	8°
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

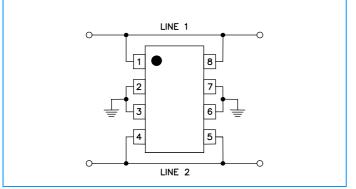
Soldering Footprint

Shenzhen JDT Fuse Industrial Co.,Ltd

Low Capacitance


Transient Voltage Suppressors Array for ESD Protection

SLVU2.8-4


Applications Note

Electronic equipment is susceptible to damage caused by Electrostatic Discharge (ESD), Electrical Fast Transients (EFT), and tertiary lightning effects. Knowing that equipment can be damaged, the SLVU2.8-4 was designed to provide the level of protection required to safe guard sensitive equipment. This product can be used in different configurations to provide a level of protection to meet unidirectional line requirements as well as bidirectional requirements either in a common-mode or differential-mode configuration.

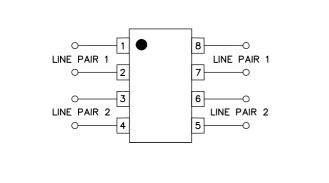

Figure 1. Unidirectional Common-Mode Protection

Figure 2. Bidirectional Common-Mode Protection

Figure 3. Bidirectional Differential-Mode Protection

Unidirectional Common-Mode Configuration (Figure 1)

The SLVU2.8-4 provides up to four lines of protection in a common-mode configuration as depicted in figure 1. Circuit connectivity is as follows:

- Line 1 is connected to Pin 1
- Line 2 is connected to Pin 7
- Line 3 is connected to Pin 3
- Line 4 is connected to Pin 5
- Pins 2, 4, 7 and 8 are connected to ground

Bidirectional Common-Mode Configuration (Figure2)

The SLVU2.8-4 provides up to two lines of protection in a common-mode configuration as depicted in figure 2. Circuit connectivity is as follows:

- Line 1 is connected to Pins 1 & 8
- Line 2 is connected to Pins 4 & 5
- Pins 2, 3, 6, and 7 are connected to ground

Bidirectional Differential-Mode Configuration (Figure3)

The SLVU2.8-4 provides up to two-line pairs of protection in a differential - mode configuration as depicted in figure 3. Circuit connectivity is as follows:

- Line Pair 1 is connected to Pins 1 & 2
- Line Pair 1 is connected to Pins 7 & 8
- Line Pair 2 is connected to Pins 3 & 4
- Line Pair 2 is connected to Pins 5 & 6

Circuit Board Layout Recommendations

Circuit board layout is critical for Electromagnetic Compatibility (EMC) protection. The following guidelines are recommended:

- The protection device should be placed near the input terminals or connectors, the device will divert the transient current immediately before it can be coupled into the nearby traces.
- The path length between the TVS device and the protected line should be minimized.
- All conductive loops including power and ground loops should be minimized.
- The transient current return path to ground should be kept as short as possible to reduce parasitic inductance.
- Ground planes should be used whenever possible. For multilayer PCBs, use ground vias.

Shenzhen JDT Fuse Industrial Co.,Ltd