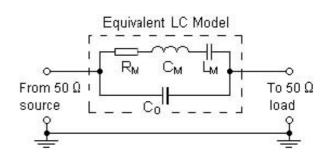

The HPR315 is a true one- port , surface- acoustic- wave(SAW) resonator in a low- profile D -11 case. It provides reliable , fundamental- mode , quartz frequency stabilization of fixed- frequency transmitters operating at 315.00 MHz.

1. Package Dimension (D -11)

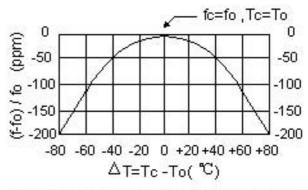
Pin	Connection		
1	Input		
2	Case Ground		
3	Output		


Dimension	Data (unit: mm)			
Α	0.45±0.05			
В	5.08±0.06			
С	3.0±0.20			
D	3.0 max			
Е	8.36±0.08			
F	3.45±0.08			

2. Marking

R315

Color: Black or Blue


3. Equivalent LC Model and Test Circuit

4. Typical Frequency Response

P1:Transmission /M Log Mag 3.5 dB/ Ref -15.60 dB P2:Off | Meas1:Mkr1 314.975 MHz -1.059dB | Meas1:Mkr1 314.975 MHz | Meas1:Mkr1 314.975 MHz | Meas1:Mkr1 314.975 MHz | Span 1.000 MHz

5.Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

6. Performance

6-1.Maximum Rating

Rating	Value	Units
CW RF Power Dissipation	+10	dBm
DC Voltage Between Any Two Pins	$\pm 30 V$	VDC
Case Temperature	-40 to +85	$^{\circ}$

6-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Units
Center Frequency (+25°C)	Absolute Frequency	f _C	314.925		315.075	MHz
	Tolerance from 315.000MHz	Δ f _C		±75		kHz
Insertion Loss		IL		1.1	1.5	dB
Quality Factor	Unloaded Q	Q_U		14292		
	50 Ω Loaded Q	Q_L		1,700		
Temperature Stability	Turnover Temperature	T _o	5	20	35	$^{\circ}$ C
	Turnover Frequency	f _o		fc		kHz
	Frequency Temperature Coefficient	FTC		0.037		ppm/°C 2
Frequency Aging Absolute Value during the First Year		f _A		≤10		ppm/yr
DC Insulation Resistance Between Any Two Pins			1.0			ΜΩ
RF Equivalent RLC Model	Motional Resistance	R _M		13.5	19	Ω
	Motional Inductance	L _M		97.538		μH
	Motional Capacitance	См		2.6199		fF
	Pin 1 to Pin 2 Static Capacitance	Co	2.3	2.6	2.9	pF

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

NOTES:

- 1. Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 2. The center frequency, f_C , is the frequency of minimum IL with the resonator in the specified test fixture in a 50 Ω test system with VSWR \leq 1.2: 1. Typically, $f_{oscillator}$ or $f_{transmitter}$ is less than the resonator f_C .
- 3. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 4. Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 2^{\circ}C$.
- 5. The design, manufacturing process, and specifications of this device are subject to change without notice.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_C , IL, 3 dB bandwidth, f_C versus T_C , and C_O .
- 7. Turnover temperature, T_O , is the temperature of maximum (or turnover) frequency, f_O , The nominal center frequency at any case temperature, T_C , may be calculated from: $f = f_O [1-FTC (T_O-T_C)^2]$. Typically, oscillator T_O is 20°C less than the specified resonator T_O .
- 8. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_0 is the measured static (nonmotional) capacitance between either pin 1 and ground or pin 2 and ground .The measurement includes case parasitic capacitance with a floating case. For usual grounded case applications (with ground connected to either pin 1 or pin 2 and to the case), add approximately 0.25 pF to C_0 .

SHENZHEN ZHONGKEJING ELECTRONIC Co., LTD

E-mail: zkjdz12345@163.com TEL: 0755-29666862 FAX: 0755-29666869